

Pergamon Tetrahedron Letters 41 (2000) 9239–9243

TETRAHEDRON LETTERS

Lewis acid stereocontrolled additions of a silyl ketene acetal to 2,3-di-*O*-isopropylidene-D-glyceraldehyde nitrones. Synthesis of L-isoxazolidinyl nucleosides

Pedro Merino,* Eva M. del Alamo, Maite Bona, Santiago Franco, Francisco L. Merchan, Tomas Tejero and Odile Vieceli

Departamento de Quimica Organica, *Facultad de Ciencias*-*ICMA*, *Universidad de Zaragoza*, *E*-50009 *Zaragoza*, *Aragon*, *Spain*

Received 22 September 2000

Abstract

The reaction of *O*-methyl-*O*-*tert*-butyldimethylsilyl ketene acetal with *N*-benzyl and *N*-methyl-2,3-*O*isopropylidene-D-glyceraldehyde nitrones in the presence of boron trifluoride etherate afforded the corresponding isoxazolidin-5-ones in excellent yields and *anti*-selectivities. The obtained compounds were used as key intermediates for the synthesis of isoxazolidinyl nucleosides of the L-series. © 2000 Elsevier Science Ltd. All rights reserved.

The Lewis acid-promoted additions of various organometallic reagents to chiral nitrones are now well-established as powerful synthetic methods because they offer mild reaction conditions and high stereocontrol.¹ The key factor for the successful diastereoface differentiation, which we described some years ago, is the appropriate choice of the Lewis acid. Whereas $ZnBr_2$ -promoted additions give rise to *syn*-adducts, Et₂AlCl-promoted reactions lead to *anti*-isomers preferentially.2 Recently, we described the addition of both lithium and sodium enolates to *N*-benzyl-2,3- *O*-isopropylidene-D-glyceraldehyde nitrone (BIGN, **1a**) and applied it successfully to the efficient synthesis of novel isoxazolidine nucleosides³ of biological importance.⁴

* Corresponding author. E-mail: pmerino@posta.unizar.es

⁰⁰⁴⁰⁻⁴⁰³⁹/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01674-9

A major drawback is, however, that the Lewis acid employed to induce an *anti*-selectivity $(Et₂AICI)$ also reacts with the enolate thus considerably lowering the yield of the reaction.³

In light of our synthetic interest in novel nucleoside analogues, we sought a practical methodology for the construction of chiral isoxazolidin-5-ones with *anti*-selectivity (and then L -isoxazolidinyl nucleosides) from α -alkoxy nitrones. In this context we have recently described an alternative approach to L-isoxazolidinyl nucleosides based on the 1,3-dipolar cycloaddition reaction between 1a and vinyl acetate.⁵ The synthesis of L-isoxazolidinyl nucleosides had also been reported by Zhao et al.⁶ Now, we wish to report that $BF_3·Et_2O$ is able to induce a highly *anti*-stereoselective addition to **1**, thus achieving stereodivergency in the metal ketene acetal additions to α -alkoxy nitrones⁷ and enantiodivergency in the synthesis of isoxazolidinyl nucleosides.

We examined the addition of *O*-*tert*-butyldimethylsilyl-*O*-methyl ketene acetal **2** to nitrones **1** in the presence of Lewis acids (Scheme 1). The results summarized in Table 1 display a marked contrast with those observed by Kita et al.⁸ with ZnI_2 as a Lewis acid. These authors observed that whereas the addition of silyl ketene acetal **2** to **1a** took place with a good *syn*-selectivity,

Scheme 1.

Table 1 Stereoselective addition of ketene acetal **2** to nitrones **1** via Scheme 1^a

Entry	Nitrone	Conditions	Additive (equiv.)	$3:4:5^b$	syn:anti ^c	Yield $(^{0}_{0})^{d}$
	1a	$CH2Cl2$, 1 h	TBSOT $f(1.0)$	100:0:0	77:23	91
2	1a	THF, 1 h	TBSOT $f(1.0)$	100:0:0	70:30	94
3	1a	Et ₂ O ₂ 12 h	Et ₂ AICI (1.0)	10:90:0	30:70	70
4	1a	$CH2Cl2$, 48 h	$BF_3 \cdot Et_2 O(0.1)$	100:0:0	9:91	12
5	1a	$CH2Cl2$, 30 min	BF_3 · $Et_2O(1.0)$	22:33:45	7:93	91
6	1a	$CH3CN3$ 30 min	BF_3 ·Et ₂ O (1.0)	17:33:50	10:90	78
	1a	THF, 30 min	$BF_3 \cdot Et_2 O (1.0)$	25:25:50	10:90	90
8	1a	$CH2Cl2$, 30 min	BF_3 · $Et_2O(2.0)$	0:25:75	7:93	93
9	1a	$CH2Cl2$, 30 min	BF_3 · Et ₂ O (4.0)	0:40:60	8:92	42
10	1b	$CH2Cl2$, 1 h	TBSOT $f(1.0)$	100:0:0	75:25	87
11	1b	Et ₂ O ₁ 12 h	Et ₂ AICI (1.0)	0:0:100	22:78	81
12	1b	THF, 30 min	BF_3 ·Et ₂ O (1.0)	0:0:100	12:88	85
13	1b	$CH2Cl2$, 30 min	BF_3 : Et ₂ O (1.0)	10:0:90	7:93	92
14	1b	$CH2Cl2$, 30 min	BF_3 Et ₂ O (2.0)	0:0:100	< 5:95	90

^a All reactions were carried out at -80° C using an excess (3.0 equiv.) of enolate.

^b Determined by NMR analysis of the crude reaction mixture.

^c Measured over compound **5** after desilylation and cyclization.

^d Calculated as the sum of the isolated yields of the diastereomeric mixtures of **3**, **4**, and **5**.

a near 1:1 mixture of diastereomers was obtained when an *O*-*tert*-butyl ketene acetal was used as a nucleophile.⁹

In our experiments, the addition of **2** to nitrones **1** led to a mixture of silylated hydroxylamines **3**, free hydroxylamines **4** (only observed with nitrone **1a**) and isoxazolidinones¹⁰ **5**, depending on both the nature and stoichiometry of the Lewis acid.

When nitrone **1a** was treated with TBSOTf and then with ketene acetal **2**, compound **3a** was obtained in good yield and *syn*-selectivity (entries 1 and 2). The same result was observed with nitrone **1b** (entry 10). However, when $Et₂AICI$ was used as a pre-complexing agent of **1a**, a mixture of hydroxylamines **3a** and **4a** was obtained and the *anti*-isomers became predominant with acceptable diastereoselectivities (entry 3). In the case of nitrone **1b** the *anti*-selectivity was also observed but only cyclized compound **5b** was obtained (entry 11). The use of BF_3 ·Et₂O in a catalytic amount afforded **3a** exclusively with a good level of *anti*-selectivity (entry 4). Unfortunately, the yield of the reaction was only 12%, presumably due to the necessity of stoichiometric amounts of additive; actually, nitrone **1** was recovered in nearly 80% yield. In fact, 1.0 equiv. of $BF_3·Et_2O$ increased the yield of the reaction to 91%, without a substantial lost of selectivity (entry 5). Under these conditions, a 2:3:4 mixture of compounds **3a**, **4a** and **5a** was obtained. This result was only slightly affected by a change of solvent (entries 6 and 7). An excess of 2.0 equiv. of BF_3 ·Et₂O enriched the mixture of obtained compounds into the cyclic one **5a**, no silylated hydroxylamine **3a** being observed (entry 8). Also, in this case both the yield and *anti*-selectivity showed high values. In an attempt to obtain only the isoxazolidin-5-one **5a**, we

Scheme 2. Reagents and conditions: (a) HF, Py, 0° C, 30 min; (b) NaOMe, MeOH, rt, 4 h; (c) DIBAH, CH₂Cl₂, −80°C, 1 h, then Ac2O, Py, 0°C, 30 min; (d) **7a** (or **7b**), TMSOTf, CH2Cl2; (e) *p*-TosOH (cat.), MeOH, then NaIO4, MeOH (aq.), then $NaBH₄$, MeOH, 0°C, 45 min

checked the addition in the presence of 4.0 equiv. of $BF_3·Et_2O$ (entry 9). However, under these conditions the yield of the reaction dropped considerably.¹¹ The reversal of the stereoselectivity by the use of BF_3 ·Et₂O was also for nitrone **1b** (entries 12–14), the best result found, being obtained when 2.0 equiv. of additive were used (entry 14).

The diastereoselectivities of the processes were measured over compounds **5** after desilylation of **3** (HF, Py) and cyclization of **4** (NaOMe, MeOH)¹² as shown in Scheme 2. The stereochemistry of isoxazolidinones **5a** was assigned by X-ray crystallographic analysis of a single crystal of the major isomer *anti*-**5a**. ¹³ The structure of compounds **5b** was deduced by comparison of physical and spectroscopic data¹⁴ with those described in the literature⁹ for *syn*-5b.

With respect to the synthetic utility of compounds *anti*-**5**, they were converted into the corresponding 5-acetoxy isoxazolidines *anti*- $\bf{6}$ by reduction (DIBAH, CH₂Cl₂) and subsequent acetylation (Ac_2O , Py). These key intermediates were further transformed into L-isoxazolidinyl nucleosides **10a–d** and **11a–d** (Scheme 2^{14} according to the Vörbruggen conditions^{10,15} and following our previously described protocol,⁵ which had been successfully applied for the synthesis of isoxazolidinyl thymidines **10d** and **11d**.

In summary, the results presented here represent the first evidence that silyl ketene acetals can be added to α -alkoxy nitrones with complete stereocontrol starting from the same substrate. The application of this methodology has served for providing access to L-isoxazolidinyl nucleosides in higher yields than those reported previously.^{5,6} In addition, both $D-$ and L -series are accessible starting from D-glyceraldehyde nitrones as the only chiral sources.

Acknowledgements

Financial support from DGES (Madrid, Spain, Project PB97-1014) and DGA (Aragon, Spain, Project PO79/99-C) is gratefully acknowledged.

References

- 1. For an account, see: (a) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. *Synlett* **2000**, 442–454. For reviews, see: (b) Lombardo, M.; Trombini, C. *Synthesis* **2000**, 759–774. (c) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. In *Recent Research and Development in Synthetic Organic Chemistry*; Pandalai, S. G., Ed.; Transworld Research Network: Trivandrum, India, 1998; Vol. 1, pp. 1091–1121. (d) Merino, P.; Tejero, T. *Molecules* **1999**, ⁴, 165–175.
- 2. For some leading references, see: (a) Merino, P.; Castillo, E.; Franco, S.; Merchan, F. L.; Tejero, T. *J*. *Org*. *Chem*. **1998**, 63, 2371–2374. (b) Merino, P.; Castillo, E.; Franco, S.; Merchan, F. L.; Tejero, T. *Tetrahedron*: *Asymmetry* **1998**, 9, 1759–1769. (c) Merino, P.; Castillo, E.; Franco, S.; Merchan, F. L.; Tejero, T. *Tetrahedron* **1998**, 54, 12301–12322. (d) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. *Tetrahedron*: *Asymmetry* **1997**, 8, 3489–3496.
- 3. Merino, P.; Franco, S.; Garces, N.; Merchan, F. L.; Tejero, T. *Chem*. *Commun*. **1998**, 493+.
- 4. For a review, see: Pan, S.; Amankulor, N. M.; Zhao, K. *Tetrahedron* **1998**, 54, 6587–6604.
- 5. Merino, P.; del Alamo, E. M.; Franco, S.; Merchan, F. L.; Simon, A.; Tejero, T. *Tetrahedron*: *Asymmetry* **2000**, 11, 1543–1554.
- 6. Xiang, Y.; Gong, Y.; Zhao, K. *Tetrahedron Lett*. **1996**, 47, 4877–4880.
- 7. For other additions of ketene acetals to nitrones, see: (a) Ohtake, H.; Imada, Y.; Murahashi, S.-I. *J*. *Org*. *Chem*. **1999**, 64, 3790–3791. (b) Jost, S.; Gimbert, Y.; Greene, A. E.; Fotiadu, F. *J*. *Org*. *Chem*. **1997**, 62, 6672–6677. (c) Camiletti, C.; Dhavale, D. D.; Donati, F.; Trombini, C. *Tetrahedron Lett*. **1995**, 36, 7293–7296.
- 8. Kita, Y.; Tamura, O.; Itoh, F.; Kishino, H.; Miki, T.; Kohno, M.; Tamura, Y. *Chem*. *Commun*. **1988**, 761–763.
- 9. The same authors reported, however, that when a bulky group $(CH(Me)Ph$ or $CHPh₂$) was attached to the nitrone, nitrogen *anti*-selectivity was observed, particularly in the case of nitrones derived from 4-deoxy-L-erythrose. See: Kita, Y.; Itoh, F.; Tamura, O.; Ke, Y. Y.; Tamura, Y. *Tetrahedron Lett*. **1987**, 28, 1431–1434.
- 10. There is a precedent for such an intramolecular cyclization in the presence of a Lewis acid. See: Xiang, Y.; Gi, H.-J.; Niu, D.; Schinazi, R. F.; Zhao, K. *J*. *Org*. *Chem*. **1997**, 62, 7430–7434.
- 11. This is presumably due to occurrence of dioxolane ring-opening promoted by an excess of Lewis acid. See: DeGiorgis, F.; Lombardo, M.; Trombini, C. *Tetrahedron* **1997**, 53, 11721–11730.
- 12. The global process consisting of desilylation and cyclization can also be carried out over crude mixtures of compounds **3**, **4** and **5** in order to obtain, in a one-flask process, isoxazolidinones **5**.
- 13. The authors have deposited atomic coordinates for the structure of *anti*-**5a** with the Cambridge Crystallographic Data Centre (deposition number: CCDC 149829). Data for *syn*-**5a** had also been deposited previously (see Ref. 3).
- 14. Selected data (solvent for optical rotations: CHCl₃) for *anti*-5a: $[\alpha]_D^{20} = -36$ (*c* 1.13); *anti*-5b: $[\alpha]_D^{20} = -95$ (*c* 1.11); **10a**: $[\alpha]_D^{20} = -14$ (*c* 0.28); **10b**: $[\alpha]_D^{20} = -33.4$ (*c* 0.40); **10c**: $[\alpha]_D^{20} = -11$ (*c* 0.8); **10d**: $[\alpha]_D^{20} = -6$ (*c* 1.10); Ref. 5: $[\alpha]_D^{20} = -7$ (*c* 1.10); **11a**: $[\alpha]_D^{20} = -43$ (*c* 0.31); **11b**: $[\alpha]_D^{20} = -98$ (*c* 0.29); **11c**: $[\alpha]_D^{20} = -23$ (*c* 0.16); **11d**: $[\alpha]_D^{20} = -38$ (*c* 0.89); Ref. 5: $[\alpha]_D^{20} = -36$ (*c* 1.11). Full experimental details and characterization, data are available from the authors upon request.
- 15. Vo¨rbruggen, H.; Kvolikiewicz, K.; Bennua, B. *Chem*. *Ber*. **1981**, 114, 1234–1255.